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ABSTRACT: 

The math model proposed takes into consideration 

both equipment failure preventive and corrective 

maintenance rates, and can be used to predict 

system probability of being in failed state i.e. 

undergoing repairs, availability and mean time to 

failure.It represents a system that can either be 

operating normally, in degradation mode, or has 

failed completely. A good example of this type 

could be power generation plant, i.e. electricity 

production at full capacity, derated capacity or not 

at all. Corrective maintenance initiated from 

degradation and completely failed modes of the 

system to repair failed parts, i.e. higher failure and 

downtime rates. The model provide a framework 

that can be applied and used in a preventive 

maintenance scheduling andis not restricted to 

manufacturing or service systems; may equally be 

used to find optimal preventive and replacement 

schedules. It is expected that the presentation will 

put in proper focus and promote better 

understanding of maintenance practice in the power 

sector. 

Keywords: mathematical model, adoption, power 

sector, performance improvement, failure 

prevention, maintenance activities 

 

I. INTRODUCTION 
Generating units are prone to failure due 

to mechanical, electrical, thermal stress and adverse 

working environmental conditions. Operations and 

Maintenance (O & M) are responsible for a large 

chunk or proportion of energy production cost. 

Reducing down the maintenance cost is the key to 

keep the power industry competitive. This is aimed 

at maximizing power output, minimizing outage 

time and optimizing maintenance activities in the 

electric power industry. In mathematical 

maintenance analysis it may be necessary to find 

solutions to a set of linear differential equations, 

particularly, when applying the Markov 

method[10]. Even though there are various 

methods for solving differential equations, the 

Laplace transform approach is probably the most 

effective technique for solving a set of linear 

differential equations. This piece of example 

demonstrates application of Laplace transform to 

solve Linear Differential Equation. Assume that the 

following two differential equations describe a 

repairable system as expressed [7]. 
dPo (t)

dt
= −λPo t +  µPi(t)(1) 

dPi (t)

dt
= −µPi t +  λPo(t)(2) 

Where, dPi t = Probability that the system is in 

state i at time t, 

For  i = 0 (working normally), i = 1 (failed); 

λ = system failure rate; and 

µ = system repair rate. 

At time t=0, Po 0 = 1 and Pi(0) = 0 

It can be shown using Laplace transforms 

Equations (1) and (2) that the probability of the 

system operating normally, i.e.…, Po(t), is given 

by the equation 

f t =
μ

λ+µ
+

λ

λ+µ
e− λ+µ t(3) 

Taking Laplace transform of equation (3) and (4) 

yields 

SPo s − Po 0 = −λPo S + µPi(S)(4) 

 SPi s − Pi 0 = −µPi S + λPo(s)(5)  

Where, Pi(s) is the Laplace transform of the 

probability that the system is in state i= 0, 1. For 

given initial conditions Equations (4) and (5) 

becomes  

SPo(s)-1=-λPo(s) +µPi(s)  (6) 

SPi(s) =-µPi(s) +λPo(s)(7) 
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Rearranging equation (6) yields P𝑖 (s) = 
 Po   s 

S+μ
 (8) 

Substituting equation (7) into (8) produce  

Po(s) = 
(S+μ)

S(s+λ+ μ)
(9) 

Taking inverse Laplace transform of equation (9) 

results into 

Po t =
µ

λ+µ
+

λ

λ+µ
e− λ+µ t (10) 

For f t = Po(t), equation (3) and (10) are 

identical. It means equation (3) denotes the 

probability of the system operating normally when 

its (i.e., system) failure and repair rates are given. 

 

II. MODEL FOR SYSTEM 

PERFORMANCE IMPROVEMENT 
By following the Laplace transform linear 

differential equation methodology 

demonstrated in section above 

systematically and meticulously in 

formulating a model, the basic 

consideration as objective functions is the 

plant availability and reliability based on 

assigning resources to both equipment 

failure preventive and corrective 

maintenance. 

Hence, the entire life of a system can be considered 

as a series of life cycle. For this, the concept of the 

system life at the start of the cycle is defined; the 

system life is at its highest value, representing fully 

restored or as good as new condition. A series of 

random shocks cause deterioration and the system 

life value drops in discrete steps corresponding to 

the frequency and the magnitude of the shocks. 

Finally, the system suffers failure, at which the 

system life value drops to zero. The system is now 

restored completely; at this point, the second cycle 

starts [2]. 

It could appear that both the system life 

and the shock magnitude would need to be 

measured in the same units, if any relationship is to 

be developed. For convenience, a unit of life 

(CLU) as a common unit for both systems life and 

for shock magnitude is chosen. Further, the cycle is 

constrained to lie between (0CLU) and (1CLU), 

where (0CLU) represents failure of the system, and 

(1CLU) represents a fully restored state. 

Notation: 

Dt=system downtime (0 Dt 1); 

Kt=annual system downtime cost (= Kt f (Dt)); 
Bt= system life at time t in units of cycle life 

(CLU) (0CLU)  (CLU); 

L (¸) –life cdf of repaired system; 

i  -index for life cycles,  = 1, 2, 3 …. ; 

Sij – shock magnitude for jth
 shock in the ith

 cycle 

in unit of cyclic life, (OCLU) (ICUL); 

Qx– mean number of shocks to accumulate a total 

magnitude of life at X; 

Di-equipment downtime in the ith
 cycle, Time 

interval between failure and start of next cycle; 

Ti -total cycle time for the ith
 cycle;  

µ - mean shock rate (0  ); 

 - Frequency of inspection (0 ); 

Pois - (K,, t) probability of K shocks arriving at  

in time interval (P,t); 

(
.
) – Survivor functions of time until failure in the 

ith
 cycle; 

E {g(x)–Mathematical expectation of g(x) is any 

continuous function defined for all real (x) value. 

Assumptions: 

  inspection is performed at a frequency of 

 independent of the shock failure process; 

  shocks arrive randomly according to a 

Poisson process of rate ; and 

 system life is regenerative, and a new 

cycles starts after each repair, which restores the 

system to its original condition [4]. 

The Figure 1: Shows the behavior of a typical 

system subjected to shock. It begins operations 

with the system life having a value of (1CLU). A 

series of random shocks reduce this to a value of 

(0CLU), which represents failure. The system is 

repaired or restored to its original state of (1CLU) 

and it is repaired again. 
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Figure 1: Showing system life with random shocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dt =   
E  D i 

E  T1 
 (11) 

Since the process is regenerative for all t ≥ 0, it 

follows that; 

E  T1 =  E  T1   and E  Di = E  Di  (12)   

Hence; 

Dt =   
E  D i 

E  T1 
    (13) 

Since E  Di =    Pr.   D1 
∞

0
> t  ∂t (14) 

In any given cycle, for the system to be still 

operational at time t, the cumulative shock 

magnitude as measured in units of cycle life (CLU) 

must be less than 1, meaning the system has failed. 

It follows that: 

Pr D1 > t = Pr cumulated shock magnitude ≥
1                           (15) 

The cumulative shock magnitude is a function of 

both the cumulative number of shocks and the 

magnitude of each shock.  

Cumulative number of shocks =  Pois  K, μ, t ∂t
∞

0
              

(16) 

The magnitude of shocks is, in turn, a function of 

life cdf of a repaired system and the number of 

shocks to accumulate a total magnitude of at 

least  x. 

Hence, it can be shown that [7, 5]: 

Pr D1 > t =
1−0∞PiosK, μ, t∂t.  [0∞Qx Ldx+1  (17) 

that is; E  D1 = 1 −
  Q x  (Ldx

∞

0 )+1 

μ
(18) 

since E (T1) = expectation of cycle time   (19) 

Hence,  m c t =  
Mean  number  of  inspectation  episodes

Frequency  of  inspection
--                                     

(20) 

Hence, E  T1 =   Φ ∞
0

 i
α  

α
 (21) 

 𝜇 . 𝐸  𝑇1 =   𝛷 ∞
𝑖=1

 𝑖 𝛼  

𝛼
 (22)  

Hence, using equation (22) downtime Dt can be 

expressed as follows [7]. 

𝐷𝑡 = 1 −
  𝛷 ̶  𝑄 𝑥  𝐿 𝑑𝑥  +1∞

𝑖=1   

 𝜇    𝜙 𝑖 𝛼  ∞
𝑖=1   

(23) 

The new model derived as shown in 

equation (23) is an improvement over the existing 

models. It is more realistic in that it captures the 

existing situation in the electric power industry. It 

has more advantages to use over otherexisting 

models because it tried to remove all limitations 

associated. These other models are basically useful 

to lowerfailure rate and grossly reduce downtime. 

The main feature of the hybrid model is as follows: 

The annual system downtime cost  𝐾𝑡 is a function 

of the system downtime 𝐷𝑡, and at its simplest it 

could be a linear function 

of 𝐷𝑡 𝑎𝑠 𝑖𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 𝐹𝑖𝑔𝑢𝑟𝑒 2. It is either 

linear programming or linear optimization – a 

method of solving an optimization problem when 

the objective function is a linear function and the 

constraints are linear equations or linear 

inequalities. 𝐷𝑡 has been expressed as, both 

function of frequency of inspection ∝ and mean 

rate of shocks µ. The model is available to be tested 

and inputs made and it does not involve too much 

enumeration. Assuming a gamma distribution for 

the shock magnitude involved, downtime 𝐷𝑡 is 

treated as variable involving probability; thus 

reducing the failure due to usual subjective 

methodology of finding downtime. Generally, the 

average magnitude value of the shock and the 

System life 

Bt in CLU 

1 

 
T1 

D1 

S1, 2 

Time 

S1, 1 
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annual frequency are well known to the operator. 

Also, the maximum equipment downtime cost that 

would be permissible, are also known. These can 

be used to determine the optimum frequency of 

inspection, [3, 6]. 

 

Figure 2: The impact of PM on revenue loses 

 
 

2.1 Verification of the model 

 In the Tables 1 and 2  for verification of 

the model to ascertain its reliability by finding the 

maximum and minimum values of the given 

function called the objective function i.e. Kt= 

system annual downtime cost; and Dt = system 

downtime inspection rate values. For example, 

observing case study power plant facility over a 

period of time for 60 months and obtained the 

following data from analysis and imputing these 

carefully into equation (23) as it may apply for both 

Dt= FOD=193.6% and Kt  = FOM= 7.5%. Having 

these basic values of Φ̶, Q(x), L, μ, 𝑖 𝛼  and 𝑖  for 

both Kt and Dt then the following results in the 

tables 1 and 2 were obtained accordingly.   

The model was tested with field data of 

operations from both Afam and Sapele power 

plants to verify its reliability. It is simply presented 

in a tabular format. The mark of minimum Kt value 

indicates TPM program i.e. opportunity to pro act 

rather than react.  Kt Mark of maximum value 

indicates huge cost of operation which resonates 

between replacement, repair and breakdown costs; 

and a total deviation from TPM principles and 

underlying policies. 

 

Table 1: System annual downtime cost Kt (FOM) 

 

 

 

 

M

inimu

m Kt 

value 

using 

equatio

n (23) 

as a 

function of the system annual downtime cost is 

7.5% as indicated in Table 1. Hence, it is more 

appropriate to operate a preventive maintenance 

(PM) system which is a typical TPM program. 

Optim

um 

(minim

um) 

value 

of the 

objecti

ve 

function 7.5% is the product of the application of 

the model in equation (23). The Figure 3 show 

graphical representation of system annual 

downtime cost Kt (FOM) 

S/N FOM REPLACEMENT 

COST 

REPAIR 

COST 

BREAKDOWN 

COST 

PREVENTIVE 

MAINT. 

COST 

1 20 50m 40m 30m 10m 

2 23 57m 46m 54m 11.5m 

3 12 30m 24m 18m 6m 

4 19 47m 38m 28m 9.5m 

5 10 25m 20m 15m 5m 

6 10 25m 20m 15m 5m 

Total 94 -                      -                 -                 - 

Kt Value  37.2% 29%  25.4%  7.5% 
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Figure 2: System annual downtime cost Kt (FOM) 

 

 
Figure 3: System Downtime inspection rate Dt (FOD) 

 

Maximum Dt value using equation (23) as 

function of the equipment downtime inspection rate 

is 193.6% and expressing Dt as both function of 

frequency of inspection and mean time to repair 

(MTTR) indicated that PM action should be carried 

out thrice as much as other maintenance actions. 

Therefore, it is expected that PM actions can be 

97% on monthly basis to forestall equipment down 

time or failure. Increased PM action-a typical TPM 

program raises equipment reliability and 

availability, hence increase in system productivity 

and performability.  
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Figure 4: Show graphical representation of system downtime inspection rate Dt (FOD).

 
 

III. MAINTENANCE 

CHARACTERISTICS AND 

VARIATION OF COST WITH THE 

BASIC MAINTENANCE 

PARAMETERS 
Maintenance cost usually consists of 

indirect costs. Direct (visible) costs comprise 

factors such as direct labour, e.g. manpower, direct 

material, e.g. spare parts, and overheads, e.g. tools, 

transportation, training and methods. Indirect 

(invisible) costs are all the costs that may arise due 

to planned and unplanned maintenance actions, e.g. 

lost production costs.Implementing more effective 

maintenance approach brings benefits. Nothing, 

however mentions how to calculate or estimate the 

relevant life cycle cost factors, or required 

parameters.  This is because the impact of the 

maintenance function can be found in many areas 

in the industry such as production, quality and 

logistics. When a breakdown occurs, it is often 

easy to show that a lack of maintenance was 

responsible.  But when breakdowns do not occur, it 

is not easy to demonstrate that maintenance has 

prevented the big issue.  It is easy to say that 

maintenance costs so much per year, but not what 

is the gain of that maintenance, and how it can be 

measured. Appreciating maintenance benefits 

which could result from implementation of a wise 

maintenance policy involves importantly 

appreciating all the various costs involved [7], [8]  

When greater percentage of time is spent on 

dealing with emergencies (i.e. firefighting) and 

lesser time spent on planning preventive 

maintenance, a high proportion of cost is always 

unavoidable. Emerging repairs means that high 

inventory level of replacement components, 

particularly critical parts, are to be carried out all 

the time.  Also reactive maintenance has a negative 

impact on the production time.  

Afam and Sapele power stations records 

or data of operation showed that with good 

maintenance policy, costs can be drastically 

reduced in the electric power industry. Plant 

availability could be increased, and so increase in 

profitability achieved.  The costs of maintenance 

can be represented by the curves, shown in Figures 

5 and 6. Increase in maintenance inspections, 

lubrication and fault diagnosis will produce drastic 

decrease in repair costs and other costs, thereby 

minimizing production downtime. 
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Table 3: Cost variation with basic maintenance parameters (FOM) 

 

 
Table 4: Cost variation with basic maintenance parameters (FOD) 

 

Breakdown occurs because there is no idea 

as to what causes the breakdown until the 

equipment actually breakdown. It is the 

consequence of failure that determines the 

resources needed for a particular policy. The 

consequences of failure have adverse effects on 

quality, reliability, availability, safety and 

operational cost; hence the idea is to build on 

preventive and predictive maintenance. 

When equipment fails, there is a mean 

downtime designated BO. When equipment is 

scheduled for repair or replacement the mean 

downtime is designated B1x. In this mathematical 

model it is assumed that B1x is always greater than 

Bo by 3 i.e. 
𝐵𝑜

𝐵1 𝑥
= 3[1]. Therefore, if the mean 

downtime caused by equipment failure is three 

times as long as the mean downtime caused by 

scheduled equipment repair or replacement then  
𝐵1𝑥

𝐵𝑜  
=

1

3
= 0.333 

An appropriate probability distribution, 

usually the ―Weibull‖ distribution can be used to 

define an optimum maintenance policy to model the 

failure mechanism of equipment knowing the times 

between failure (MTBF). The expression for the 

Weibull reliability function, R (t) = exp (– t /) ᵝ. 

Where R (t) = Probability that equipment will not 

fail during a time interval,  = scale parameter, β= 

shape parameter, these can be obtained graphically. 

The Weibull probability R (t) of obtaining two 

different times between failures (TBF) can be 

determined by establishing the relationship between 

the coefficients of variation of the failure 

distribution,  
σ

MTBF
 , and the downtime ratio [ 

B1x

Bo  
 , B1x <Bo] 

assumed, using the criteria,  

if
σ

MTBF
≥

Bix

Bo
[2]                                                           

[Plan I 

i.e. carrying out preventive maintenance actions any 

time, that is To = ∞, 

 and 
σ

MTBF
< 1 −

Bix

Bo
             [2]Plan II 

i.e. restricted maintenance and must be calculated. 

These criteria clearly define basic 

maintenance policies. In the first case, the optimal 

maintenance policy is to repair or replace 

component only at failure. In the second case, 

optimal maintenance policy is to build on 

preventive or predictive maintenance and effect 

repairs immediately at a time To, such that T (TO) is 

a minimum or at failure.  

A reasonable practical approximation can 

be obtained using the following equation as stated 

Y = Bo + B1x + µ, for normal underlying failure 

distribution, [1]. This model can apply specifically 

to equipment with wear-out failure mechanism that 

is equipment for which the conditional probability 

of failure with a given survival to time t1 increases 

continuously denoting instantaneous failure rate. 

The Weibull distribution is convenient for our 

purpose because of the instantaneous failure rate 

with respect to time; and its accurate failure 

analysis and risks prediction with any sample size. 

The Weibull and its guiding characteristics 

behavior indicates that; equipment with β = 1 

(constant behavior) have a totally random failure 

mechanism independent of age; for equipment in 

this category, optimal policy is to repair or replace 

components only at failure. The Weibull 

distribution models the exponential distribution 

which is the useful life period, i.e. low constant 

failure rate. A value of β < 1 (decreasing behavior) 

typifies a startup or early failure of equipment 

period and the optimal policy is to carry out 

preventive and predictive maintenance on 

components only before failure. And the value of β 

> 1 (increasing behavior) shows end of life wear out 

or increasing failure rate. At β = 3, the Weibull 

distribution models the normal distribution, this is 

early wear out time. When β = 10, it is rapid wear-

out occurring.  

3.1 Constructing the Distribution for the Series 

If Y = Bo + B1x + µ                      (24) 

Then the mean of Y, denoted by m is  

m = E(Y) = Bo + B1x   (25) 

The probability distribution of Y 

Assuming normal errors µ is 
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F(Y) =
1

√2πσ
exp−½  -

{Y−m}2 

σ2
-                                                                        

(26)              
 

Now if the problem is to obtain estimates of Bo, B1 

and later σ², resorting to regression becomes 

remarkable available option; hence there are eight 

model cases as shown in Table (a) and the results 

are expressed as[9]. 

Case 1 when X = FOD, Y = CRPL   

 

Y1=
1

√2π(14.15)
exp−½ {Y1−(40.16−0.00014FOD )} 

199.94
(27) 

 

Case 2, when X = FOD, Y = CRP   

 

Y2=
1

√2π(12.55)
exp−½ {Y2−(35.03−0.00024FOD )} 

157.50
          

(28) 

 

Case 3, when X = FOD, Y3 = CBD 

 Y3 =
1

√2π(9.23)
exp−½ {Y3−(25.71−0.00016FOD )} 

85.19
(29) 

 

Case 4, when X = FOD, Y4 = CPM 

Y4 =
1

√2π(3.14)
exp−½ {Y4−(8.76−0.00006FOD )} 

9.86
          

(30) 

 

Case 5, when X =FOM, Y5 = CRPL 

 

Y5 =
1

√2π(2.3)
exp−½  Y5− 3.54−2.20FOM   

5.29
(31) 

 

Case 6, when X = FOM, Y6 = CRP 

 

Y6 =
1

√2π(3.3.E−15)
exp−½ {Y6−(1.16E−16.00FOM )}

(3.30E−15)2
 (32) 

 

Case 7, when X = FOM, Y7 = CBD 

 

Y7 =
1

√2π(0.20)
exp−½  Y7− 0.35+1.47FOM   

(0.04)
(33) 

 

Case 8, when X = FOM, Y8 = CPM 

 

Y8 =
1

√2π(8.24E−16)
exp−½ {Y8−(2.90E−15.50FOM )} 

(8.24E−16)2
(34) 

 

 

Figure 5: Plot for the series CRPL, CRP, CBD and CPM (FOD) 
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Figure 6: Plot for the series CRPL, CRP, CBD and CPM (FOM) 

 
 

Poor R2 values of regression models U1, 

U2, U3 and U4 as shown in the models for 

statistical analysis for Figures 5 and 6 are a 

reflection of how the system is operated or loaded 

and an indication of small sample size due to large 

outage period of generating Turbine units. This is a 

report of statistical analysis for constructing 

probability distribution to obtain estimates of a 

given regression series requiring determination of 

probable values [9]. 

 

3.2 Models for Statistical Analysis of Maintenance Activities 

 

Table a 1 

Y1= B0 + B1 FOD + U1  

Dependent variable: CRPL 

Method: Least Squares 

Date: 08/28/15   Time: 09:44 

Sample: 1 6 (Poor R
2
 value = small sample size due to large unit outage period.) 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 40.15762 14.63146 2.744607 0.0517 

FOD -0.000137 0.000888 -0.154297 0.8848 

R-squared 0.005917     Mean dependent var 38.08333 

Adjusted R-squared -0.242604     S.D. dependent var 12.69022 

S.E. of regression 14.14606     Akaike info criterion 8.397951 

Sum squared resid 800.4442     Schwarz criterion 8.328538 

Log likelihood -23.19385     F-statistic 0.023807 

Durbin-Watson stat 1.433030     Prob(F-statistic) 0.884848 

 

Table a 2  

 Y2 =B0 + B2 FOD + U2  

Dependent Variable: CRP 

Method: Least Squares 

Date: 08/28/15   Time: 09:52 

Sample: 1 6 (Poor R
2
 value = small sample size due to large unit outage 
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period.) 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 35.02614 12.98294 2.697858 0.0542 

FOD -0.000244 0.000788 -0.309569 0.7723 

R-squared 0.023398     Mean dependent var 31.33333 

Adjusted R-squared -0.220753     S.D. dependent var 11.36075 

S.E. of regression 12.55223     Akaike info criterion 8.158875 

Sum squared resid 630.2340     Schwarz criterion 8.089462 

Log likelihood -22.47663     F-statistic 0.095833 

Durbin-Watson stat 1.328405     Prob(F-statistic) 0.772345 

 

Table a 3 

Y3=B0 + B3 FOD + U3  

Dependent Variable: CBD  

Method: Least Squares 

Date: 08/28/15   Time: 09:56 

Sample: 16 (Poor R
2
 value = small sample size due to large unit outage period.) 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 25.71190 9.550879 2.692098 0.0545 

FOD -0.000157 0.000580 -0.271049 0.7998 

R-squared 0.018036     Mean dependent var 23.33333 

Adjusted R-squared -0.227455     S.D. dependent var 8.334667 

S.E. of regression 9.234026     Akaike info criterion 7.544869 

Sum squared resid 341.0690     Schwarz criterion 7.475455 

Log likelihood -20.63461     F-statistic 0.073467 

Durbin-Watson stat 1.309791     Prob(F-statistic) 0.799766 

 

Table a 4 

 Y4= B0 + B4 FOD + U4 

Dependent Variable: CPM 

Method: Least Squares 

Date: 08/28/15   Time: 09:59 

Sample: 16 (Poor R
2
 value = small sample size due to large unit outage period.) 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 8.756534 3.245736 2.697858 0.0542 

FOD -6.10E-05 0.000197 -0.309569 0.7723 

R-squared 0.023398     Mean dependent var 7.833333 

Adjusted R-squared -0.220753     S.D. dependent var 2.840188 

S.E. of regression 3.138058     Akaike info criterion 5.386287 

Sum squared resid 39.38962     Schwarz criterion 5.316873 

Log likelihood -14.15886     F-statistic 0.095833 

Durbin-Watson stat 1.328405     Prob(F-statistic) 0.772345 
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Table a 5   

 Y5= B0 + B5 FOM + U5  

Dependent Variable: CRPL 

Method: Least Squares 

Date: 08/28/15   Time: 10:04 

Sample: 1 6 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 3.545455 2.985772 1.187450 0.3007 

FOM 2.204545 0.180928 12.18464 0.0003 

R-squared 0.973765     Mean dependent var 38.08333 

Adjusted R-squared 0.967206     S.D. dependent var 12.69022 

S.E. of regression 2.298097     Akaike info criterion 4.763241 

Sum squared resid 21.12500     Schwarz criterion 4.693828 

Log likelihood -12.28972     F-statistic 148.4655 

Durbin-Watson stat 2.528926     Prob(F-statistic) 0.000260 

 

Table a 6 

 Y6 = B0 + B6 FOM + U6 

 Dependent Variable: CRP 

Method: Least Squares 

Date: 08/28/15   Time: 10:08 

Sample: 1 6 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 1.16E-14 4.28E-15 2.708580 0.0536 

FOM 2.000000 2.60E-16 7.70E+15 0.0000 

R-squared 1.000000     Mean dependent var 31.33333 

Adjusted R-squared 1.000000     S.D. dependent var 11.36075 

Log likelihood 2.298097    Akaike info criterion 4.763241 

S.E. of regression 3.30E-15     Sum squared resid 4.35E-29 

F-statistic 5.94E+31     Durbin-Watson stat 0.585034 

Prob(F-statistic) 0.000000     Schwarz    criterion                0.000345  

 

Table a 7 

Y7= B0 + B7 FOM + U7  

Dependent Variable: CBD 

Method: Least Squares 

Date: 08/28/15   Time: 10:10 

Sample: 16 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.351240 0.257420 1.364461 0.2441 

FOM 1.466942 0.015599 94.04180 0.0000 

R-squared 0.999548     Mean dependent var 23.33333 

Adjusted R-squared 0.999435     S.D. dependent var 8.334667 

S.E. of regression 0.198132     Akaike info criterion -0.138567 

Sum squared resid 0.157025     Schwarz criterion -0.207981 

Log likelihood 2.415702     F-statistic 8843.860 

Durbin-Watson stat 1.862114     Prob(F-statistic) 0.000000 
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Table a 8 

Y8=B0 + B8 FOM +U8 

Dependent Variable: CPM 

Method: Least Squares 

Date: 08/28/15   Time: 10:11 

Sample: 16 

Included observations: 6 

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.90E-15 1.07E-15 2.708580 0.0536 

FOM 0.500000 6.49E-17 7.70E+15 0.0000 

R-squared 1.000000     Mean dependent var 7.833333 

Adjusted R-squared 1.000000     S.D. dependent var 2.840188 

Log likelihood                  -1724538 Akaike info criterion -4.320332 

S.E. of regression              8.24E-16     Sum squared resid 2.72E-30 

F-statistic 5.94E+31     Durbin-Watson stat 0.585034 

Prob(F-statistic) 0.000000 Schwarz    criterion  3.205612 

 

IV. CONCLUSION 
Engineering maintenance is an important 

sector of any economy. Each year the power 

industry in Nigeria spends million of amounts in 

naira on plant maintenance and operation, and in 

2017 alone,the electricity regulatory commission in 

Nigeria budget request included $9 million for 

operation and maintenance for the power 

production industry. Furthermore, it is estimated 

that approximately 80% of the industry funds is 

spent to correct chronic failures of machines, 

systems, and people. The elimination of many of 

these chronic failures through effective 

maintenance can reduce the cost between 40 and 

60%. 

This study through math models ushers in 

a broader solution for equipment management—

cradle-to-grave strategy to preserve equipment 

functions, avoid the consequences of failure, and 

ensure the productive capacity of equipment; which 

ordinarily cannot be achieved by simply following 

the traditional approach to maintenance,taking 

cognizance of the frequent issues of; human error, 

quality and safety, software maintenance, 

maintenance costing, reliability, and 

maintainability of equipment. 

A maintenance optimization model with 

dual-objective potential, i.e. high failure/downtime 

rate and costs reduction is presented in this work to 

calculate the reliability, optimum inspection 

frequency to maximize profit, mean time to failure 

of a system subject to periodic maintenance, failed 

part replacement with a new and statistically 

identical one and periodic maintenance 

performance on the system at required period, 

starting at time zero. The model is based on the 

premise that facility/equipment under repair lead to 

zero output, thus less profit. Furthermore, if 

equipment is inspected too often, there is danger 

that it may be more costly due to factors such as 

loss of production, cost of materials, and wages 

than losses due to breakdowns. 
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